
Physics , Condensed Matter
Homework 

Due Tuesday, th October 

Jacob Lewis Bourjaily

Problem 1: Electron in a Two-Dimensional, Weak Sinusoidal Potential

Consider electrons moving in a two-dimensional, weak periodic potential given by

V (x, y) = U

[

cos

(

2πx

a

)

+ cos

(

2πy

a

)]

,

where U > 0.
a. We are asked to find the two lowest-eigenenergies and eigenstates to first order in U at the edge of

the Brillouin zone, but away from the corners.

To write the Schrödinger equation in momentum space we will need the Fourier modes
of the potential function; the non-vanishing modes are U±bx

= U±by
= U/2, where

bx = bq̂x and by = bq̂y where b = 2π
a and a is the lattice spacing.

There are four ‘edges’ of the Brillouin zone, and the essential result will be identical
for all four of them. Without loss of generality, let us consider the Schrödinger
equation for the wave function with momentum on the Bragg plane q = (π/a, 0).

Letting ε0q = ~
2

2mq
2, we see that ε0q = ε0q−bx

on this plane; because this is the only
‘degeneracy’—before considering the effects of the weak potential—we know that to
leading order in U the Schrödinger equation gives rise to the following system of
equations1

(

ε− ε0q
)

cq =
U

2
cq−bx

;

(

ε− ε0q−bx

)

cq−bx
=
U

2
cq. (1.a.1)

This system is obviously solved by

∴ επ(q) =
1

2

(

ε0q + εq−bx

)

± 1

2

{

(

ε0q − ε0q−bx

)2
+ U2

}1/2

. (1.a.2)
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On the Bragg plane, the two lowest eigenenergies are therefore

ε± =
~

2

2m

π2

a2
± U

2
. (1.a.3)

The wave functions are found by considering again equations (1.a.1). On the Bragg
plane, we see that these imply

cq = ±cq−bx
, (1.a.4)

where ‘±’ refers to equation (1.a.2). Up to normalization, this implies that the wave
functions are

ψ+ ∼ cqe
iq·r
(

1 + e−ibx
)

∝ cos
(πx

a

)

; (1.a.5)

ψ− ∼ cqe
iq·r
(

1 − e−ibx
)

∝ sin
(πx

a

)

. (1.a.6)
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1Here we are using notation which should be common by now: the wave function ψq(r) =
P

b∈G cq−Ge
i(q−G)·r .

1
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b. We are to determine the four lowest-energy single-electron eigenstates at the corner of the
Brillouin zone to first order in U and give the corresponding wave functions.

We see at least two equivalent ways of proceeding; because they are of sufficiently differ-
ent philosophy, we will present both, if briefly. The first, and quickest solution makes
important use of our result in part (a) above. Each two adjacent Bragg planes have a
pair of parabolic energy bands, separated by a gap U . At the corners, pairs of bands
from adjacent planes would meet. From our analysis above and elsewhere, we know
that when this happens in a weak potential U , the apparently degenerate bands will
hybridize. That is, for example, the two ‘ε = ε0q − U

2 ’ bands from adjacent edges will

hybridize, giving the two lowest states at ε1 = ε0q − U and ε2 = ε0q. The two ‘upper’

bands will hybridize giving rise to ε3 = ε0q and ε4 = ε0q + U . Here, q = (π/a, π/a).
To be a bit more explicit—allowing us to determine not just the energies at the corners,

but also nearby—we could have begun with the four ‘nearly degenerate’ states at the
corners. The Schrödinger equation near the corners, to first order in U , gives rise to
the system of equations

(

ε− ε0q
)

cq =
U

2

(

cq−bx
+ cq−by

)

;
(

ε− ε0q−bx

)

cq−bx
=
U

2

(

cq + cq−bx−by

)

;

(

ε− ε0q−by

)

cq−by
=
U

2

(

cq + cq−bx−by

)

;
(

ε− ε0q−bx−by

)

cq−bx−by
=
U

2

(

cq−bx
+ cq−by

)

. (1.b.7)

This system is straight-forwardly inverted. In units where ~
2

2m = 1, the eigenenergies
near to the corner are

ε1 = q2x+q2y−2π(qx+qy)+4π2+
1

2

{

4U2+32π2
(

q2x+q2y−2π (qx+qy)+2π2
)

+4
√

(U2+16π2(π−qx)2) (U2+16π2(π−qy)2)
}1/2

;

ε2 = q2x+q2y−2π(qx+qy)+4π2− 1

2

{

4U2+32π2
(

q2x+q2y−2π (qx+qy)+2π2
)

+4
√

(U2+16π2(π−qx)2) (U2+16π2(π−qy)2)
}1/2

;

ε3 = q2x+q2y−2π(qx+qy)+4π2+
1

2

{

4U2+32π2
(

q2x+q2y−2π (qx+qy)+2π2
)

−4
√

(U2+16π2(π−qx)2) (U2+16π2(π−qy)2)
}1/2

;

ε4 = q2x+q2y−2π(qx+qy)+4π2− 1

2

{

4U2+32π2
(

q2x+q2y−2π (qx+qy)+2π2
)

−4
√

(U2+16π2(π−qx)2) (U2+16π2(π−qy)2)
}1/2

.

We of course did not need to do the above expansion to note that this analysis agrees
with our previous one for the four energies at the corner :

ε1 =
~

2

m

π2

a2
− U, ε2 = ε3 =

~
2

m

π2

a2
, ε4 =

~
2

m

π2

a2
+ U. (1.b.8)

Making use of the Schrödinger equation (1.b.7) at the corner, we see that for ε = ε0q ±U
the solutions are

cq = cq−bx−by
= ±cq−bx

and cq−bx
= cq−by

. (1.b.9)

The two degenerate wave functions do not uniquely solve the Schrödinger equation
(1.b.7)—as we should expect. For these two bands, the wave functions satisfy

cq = −cq−bx−by
and cq−bx

= −cq−by
, (1.b.10)

and any wave function can be build out of the two linearly independent relative
pairings cq = ±cq−by

. In all, the wave functions (in order of increasing energy) at

the corner are2

ψ1 ∼ cqe
iq·r
{

1 − e−ibx − e−iby − e−ib(x+y)
}

∝
{

cos
(

π (x+ y)
)

− cos
(

π (x− y)
)}

; (1.b.11)

ψ2 ∼ cqe
iq·r
{

1 − e−ibx + e−iby − e−ib(x+y)
}

∝
{

sin
(

π (x+ y)
)

+ sin
(

π (x− y)
)}

; (1.b.12)

ψ3 ∼ cqe
iq·r
{

1 + e−ibx − e−iby − e−ib(x+y)
}

∝
{

sin
(

π (x+ y)
)

− sin
(

π (x− y)
)}

; (1.b.13)

ψ4 ∼ cqe
iq·r
{

1 + e−ibx − e−iby + e−ib(x+y)
}

∝
{

cos
(

π (x+ y)
)

+ cos
(

π (x− y)
)}

. (1.b.14)

‘óπǫρ ’ǫ́δǫι πoι�ησαι

2Just to reiterate: the solutions ψ2 and ψ3 could generically be any linear combination of what we have written.
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Figure 1. Three different views of the Fermi surfaces for the (metallic) system de-
scribed in Problem 1. The figures on the left and right-hand sides are show many
equal-energy contours up to the Fermi energy. The middle plot shows just the Fermi
surfaces. (Note that the corners of the figure are on the lower band, n = 1, and the
edges are on the second band.)

c. Assuming that there are two electrons per unit cell, we are to find the lowest value of U for
which the system is a band insulator, and below witch it is a metal. We should make a qualitatively
correct representation of the Fermi surface of the system when it is metallic. changes from being a
band insulator to a metal. For a value of U for which the system describes a metal, we are to make a
qualitatively correct sketch of the locations of the Fermi surfaces in the first Brillouin zone.

Unless we are mistaken, the only point of ‘including the electron’s spin’ is that we know
there are states sufficient to fill the entire lowest energy band: when the system is a
band insulator the entire first band will be filled; when the system is a metal some
of the electrons will pour into the second band.

The system will be a metal only if the minimum energy of the second band is lower than
the highest energy of the first band. This is particularly easy because we know from
part (a) that the global minimum of the second energy is at the midpoint of one of
the first Bragg planes:

min(ε2) =
~

2

2m

π2

a2
+
U

2
. (1.c.15)

Similarly, we know that the global maximum of the lowest energy band occurs at the
corner of the Brillouin zone (because it increases away from the centre of the Bragg
plane), giving

max(ε1) =
~

2

m

π2

a
− U. (1.c.16)

Therefore, the system will be a band insulator if

min(ε2) − max(ε1) > 0 =⇒ U >
~

2π2

3ma2
. (1.c.17)

The Fermi surfaces for the system when it is a metal are shown in Figure 1.

d. We are to make a qualitatively correct representation of how the zero-temperature spin con-
tribution to the system’s magnetic susceptibility χ varies with U as U passes through the transition
between insulator and conductor. Near-to, but on the insulating side of the transition, we are to de-
scribe the lowest-energy electronic excitations above the ground state at and give possible total crystal
momentum for these excitations.

The last part can be done presently. Near the transition, the lowest energy excitations
will bring electrons at the corners of the Brillouin zone to the centres of the Bragg
planes in the second energy band. These are excitations with momentum transfer
of ∆q =

(

− π
2a , 0

)

,
(

0,− π
2a

)

,
(

−π
a ,− π

2a

)

, or
(

− π
2a ,−π

a

)

. The crystal momentum will

then be on the center of the Bragg plane, so q =
(

π
a , 0
)

,
(

0, π
a

)

,
(

−π
a , 0
)

, or
(

0,−π
a

)

.
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Problem 2: A Narrow-Gap Semiconductor

Consider two bands of states which overlap but interact only weakly. Let one of them be particle-like
and the other be hole-like. We may assume that they become degenerate and/or hybridize near zero
momentum. The Hamiltonian conserves crystal momentum and has the following matrix elements

〈1,k|H |1,k〉 =
~

2k2

2me
≡ k2, 〈2,k|H |2,k〉 = ∆ − ~

2k2

2mh
≡ ∆ − λk2, 〈1,k|H |2,k〉 = δ, (2.a.1)

where we have introduced the constant λ ≡ me

mh
and have chosen appropriate ‘units’ for the crystal

momentum k. In (2.a.1), ∆,me, and mh are all positive and δ is real.

a. We are to calculate and describe the dispersions of the resulting band structure after hybridization
for each qualitatively different case which can arise.

We have done these problems enough to know that

∣

∣

∣

∣

α− ε δ
δ β − ε

∣

∣

∣

∣

= 0 =⇒ ε =
1

2
(α+ β) ±

{

(

α− β

2

)2

+ δ2

}1/2

, (2.a.2)

where in our case α = k2 and β = ∆ − λk2 so that the dispersion is

ε± =
1

2

(

k2(1 − λ) + ∆
)

±
{

(

k2(1 + λ) − ∆

2

)2

+ δ2

}1/2

. (2.a.3)

Notice that equation (2.a.3) implies that as long as δ 6= 0, no matter how small, the
two bands will not intersect.

It is at least intuitively obvious to the author that any generic set of parameters will give
rise to situations where both bands have three stationary points. We can test this
intuition and discover some interesting results by calculating exactly where these sta-
tionary points are for each band. Of course we can do these two cases simultaneously
as follows. ε± will have an extremum if

∂ε±
∂k

= 0 = k(1 − λ) ±
(

k2(1 + λ) − ∆
)

k(1 + λ)

ζ
where ζ =

{

(

k2(1 + λ) − ∆

2

)2

+ δ2

}1/2

.

(2.a.4)
As long as δ 6= 0 and the other parameters are real, ζ > 0—which is all we need for
the moment. The first, obvious extremum is at k = 0, which is uninteresting for the
moment. The other stationary points are then seen to satisfy

0 = ±k2 (1 + λ)2

ζ
∓ (1 + λ)∆

ζ
+ (1 − λ), (2.a.5)

= ±k2 ∓ ∆

1 + λ
+ ζ

1 − λ

(1 + λ)2
; (2.a.6)

=⇒ ±k2 =
1

1 + λ

{

ζ

(

λ− 1

λ+ 1

)

± ∆

}

. (2.a.7)

Indeed, we see that ε+ (ε−) will generically have an absolute minimum (maximum)
at k2 6= 0. However, there can be a conspiracy where the term in curly brackets on
the right vanishes, giving rise to either ε− or ε+—but not both—having a third-order
global maximum or minimum at k = 0, respectively.

Let us quickly find the cases when ε+ or ε− does not have three distinct extrema. For
ε+, the upper band, ∆, ζ > 0 implies that λ − 1 < 0 or that me < mh for (2.a.7) to

vanish. Bearing in mind that ζ(k2 = 0) =
√

∆2/4 + δ2, we have

∆(1 + λ) = (1 − λ)ζ, (2.a.8)

=⇒ ∆2(1 + λ)2 = (1 − λ)2
(

∆2

4
+ δ2

)

; (2.a.9)

=⇒ δ2 =
∆2

(1 − λ)2

(

(1 + λ)2 − (1 − λ)2

4

)

. (2.a.10)
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Figure 2. The qualitatively different possible hybridizations between particle- and
hole-like bands. The possibilities are shown in the order discussed.

Similar algebra in the case of the ε− band shows that we can have a fourth-order
global maximum only when 1 − λ < 0, i.e. that mh < me. Then we have

∆(λ+ 1) = (λ− 1)ζ, (2.a.11)

=⇒ ∆2(λ + 1)2 = (λ− 1)2
(

∆2

4
+ δ2

)

, (2.a.12)

=⇒ δ2 =
∆2

(1 − λ)2

(

(1 + λ)2 − (1 − λ)2

4

)

, (2.a.13)

exactly as before (only this time we have λ > 1). Indeed, both cases are rather
contrived.

We have therefore classified the general structure of all possible hybridizations, as illus-
trated in Figure 2.
(1) Generic situation: when there is no conspiracy in any of the parameters, then

both bands will feature three extrema—and global minima of ε+ will not lie
over the global maxima of ε−.

(2) When the upper band, ε+, has a fourth-order global minimum. Recall that this
only occurs if me < mh and equation (2.a.10) is satisfied. Notice that this gives
rise to two particle-like bands.

(3) When the lower band, ε−, has a fourth-order global maximum. Recall that this
only occurs if mh < me and equation (2.a.13) is satisfied. Notice that this gives
rise to two hole-like bands.

(4) No interaction term: δ = 0. Here the bands only ‘hybridize’ in the sense that we
are perfectly free to chose our eigenenergies to be the ‘upper’ and ‘lower’ bands.

(5) When λ = 1 and ∆ = 0, the two overlapping bands will separate similar to as
along a Bragg plane. Here both bands stay quadratic.
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b. We are to obtain the density of states for δ = 0 and determine the energies and powers of the
Van Hove singularities.

When δ = 0, the band energies are simply given by their free-values. Because of this, it
is not difficult to explicitly determine the density of states. Indeed, we find for ε1

3

that

g1(ε) =
2

(2π)3
4π

k(ε)2

~2k(ε)
me

=
k(ε)me

π2~2
, (2.b.14)

and because

k(ε) =

√
2meε

~
,

this implies

∴ g1(ε) =
√
ε
(2me)

3/2

2π2~3
. (2.b.15)

Similarly, we see that

g2(ε) =
2

(2π)3
4π

k(ε)2

~2k(ε)
mh

=
k(ε)mh

π2~2
, (2.b.16)

and because in this case

k(ε) =

√

2mh(∆ − ε)

~
,

we see

∴ g2(ε) =
√

∆ − ε
(2mh)3/2

2π2~3
. (2.b.17)

The Van Hove singularities are located at ε = 0, ε = ∆ which are both ∼ √
ε.

c. We are to sketch the density of states for each of the qualitative cases studied in problem (a). For
each one, we should comment on the Van Hove singularities and their strengths.

The density of states for each of the five cases discussed in problem (a) are shown in
Figure 3. The Van Hove singularities are obvious by inspection for most of the
plots—apparently the only exception is the left leg of the third plot, which should
show a divergence (the right hand leg does not diverge).

Although it would have been preferable to have labeled the plots explicitly indicating the
singularities and their strengths, we will need to make due with a mere discussion.
Importantly, there are at most four Van Hove singularities which correspond the at
most four crystal momenta giving extrema of ε±. Because there is always a local
extrema at zero crystal momentum, two potential Van Hove singularities are at

ε+(0) and ε−(0). (2.c.18)

The other two possible places where Van Hove singularities can arise are the global
extrema of ε±. In problem (a) we calculated the values of k for which ε± would have
an extrema. A bit of algebra allows one to see that the other two possible Van Hove
singularity locations are

ε−













λ− 1

(λ+ 1)2

√

√

√

√

δ2

1 − (1−λ)2

4(λ+1)2

+
∆

λ+ 1







1/2





and ε+













1 − λ

(λ+ 1)2

√

√

√

√

δ2

1 − (1−λ)2

4(λ+1)2

+
∆

λ+ 1







1/2





.

(2.c.19)
A quick glance at the plots in Figure 3 shows that the ‘generic case’ has Van Hove sin-

gularities at all four of the possible locations. Plots two and three, when one of the
bands has a fourth-order extrema at the origin show only three of the four possible
singularities (see footnote earlier). The fourth case, where there is no coupling be-
tween the bands has only two of the singularities; the last plot, corresponding to the

3Here ε1 refers to the particle-like band.
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Figure 3. The densities of states for the band structures illustrated in Figure 2.

case where the two bands split while maintaining quadratic dependence on k gives
rise to only the two singularities which are seen approaching the gap.

We can actually ‘read off’ the strength of the singularities with a little background
information. Recall in part (a) above we showed that ∇(ε) was at most a cubic

polynomial in k. Because g(ε) ∼ k2

∇ε on general and dimensional grounds, we see
that the ‘worst’ type of singularity could therefore be 1/k ∼ 1/

√
ε which is seen

as the vertical spikes in plots 1,2,34 and 4 in Figure 3. All the other Van Hove
singularities come about the usual way, from g(ε) ∼ k2/k ∼ √

ε.

d. We are to find the gap energy when me = mh, (λ = 1).

We have done enough two-state degeneracy problems to know that the band gap energy
will be 2δ. To see this, consider zooming in near where the two bands cross; locally,
this is to order δ simply a two degenerate state problem that we are now so good at.
Simple diagonalizaton gives the result we are now able to guess without diagonalizing
anything.

If it were truly necessary to prove our intuition is correct, recall equation (2.c.19) which
tells us where the global minimum (maximum) of ε+ (ε−) is to be found. Using our
assumption that λ = 1, the expression greatly simplifies and we find

k2 = ±∆

2
.

Putting this in the dispersion relation calculated in equation (2.a.3) immediately
shows that

∴ εgap = 2δ. (2.d.20)

e. In the above analyses, we considered spherically symmetric electron potentials. In any real crystal,
there would be dispersion modifications giving rise to e.g. angular dependencies on the order of k4. We
are to describe how including these effects could affect our analysis.

There are two cases when crystal structure could possibly lead to (even dramatic) alter-
ations of our analysis above:
(1) If me,mh are too large: this would soften their intersection (making it more

sensitive to higher-order effects) and also raise the size of k for which become

4We mentioned earlier that although the spike is not seen on the printed plot, it is nevertheless present.
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nearly degenerate. In contrast, if me,mh are very small compared to the re-
ciprocal lattice, then their unperturbed intersection will be ‘steep’—ergo most
sensitive to leading effects in k—and likely to be closer to small values of k,
where the effects of the zone edges are small.

(2) If ∆ is too large: if the two bands are widely separated in energy, then our anal-
ysis above would simply have assumed that the two bands hybridize farther out
in k-space. This is only reasonable if the region where the two bands hybridize
is well within the Brillouin zone.

Baring these two caveats, many of our results above will carry over to this case with only
small refinement. Specifically, the general classification of the types of hybridized
bands will still be valid. If one or both of the situations described above apply,
however, there will be much more variety in the types of hybridized band structures
that can arise.

One possibly important change to our analysis would involve our discussion of the density
of levels: k4 terms will almost certainly add to the number of Van Hove singularities,
for example. When the periodic potential is weak5, for example, ∇ε(k) vanishes
along Bragg planes—which will certainly give rise to new Van Hove singularities in
the density of levels (although perhaps not in the energy ranges we are interested in.

Problem 3: Shubnikov-de Haas-van Alphen Oscillations

The low-temperature specific heat of a piece of metal at high magnetic fields is found to be periodic in
inverse field, with period 2×10−9 Gauss−1. We are asked to interpret this observation using a one-band
free-electron model for the conduction electrons and thereby determine the number density of electrons
and their energy in eV. At low-fields, the oscillations are not visible because of scattering effects—the
resistivity at low temperature is measure to be 0.1µΩ − cm. We are to use this to estimate the mean
free path of conduction electrons in this materials within the Sommerfeld model of conduction and use
this to estimate the minimum field strength necessary to observe oscillations of the specific heat.

Using Onsager’s result, we know that

∆

(

1

H

)

=
2πe

~

1

Ae
,

where in our case ∆(H−1) = 2 × 10−5 T−1. Ae is the cross-sectional area of the
Fermi surface in a plane normal to the magnetic field axis. If we take the free electron
approximation, then all extremal cross sections through the Fermi surface have area
πk2

F —a fact which is readily visualized. Inverting this and using real numbers, we
see that the oscillation period observed implies a Fermi momentum of

kF = 1.23 × 1010 m−1. (3.b.1)

Using all our favourite results for free electrons, we see that this implies that the density
of conduction electrons is given by

n =
k3

F

3π2
= 6.33 × 1028 m−3. (3.b.2)

And the Fermi energy is then

εF =
~

2k2
F

2me
= 5.83 eV. (3.b.3)

Using some book work in Ashcroft and Mermin, we know how the resistivity is related
to the mean free path and the scattering time. Specifically, we have the mean free
path ℓ is given by

ℓ =
50.1 eV

εFρµ
× 92 × 10−8 cm (3.b.4)

5Ashcroft and Mermin point out that this is also often true when the potential is not weak: because Bragg planes
are regions of high-symmetry it should not come as a surprise that energy bands are often forced to meet Bragg planes
symmetrically—i.e. smooth crossing in the extended zone scheme.
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where ρµ is the resistivity in µΩ − cm. We have

ℓ = 8.00 × 10−7 m (3.b.5)

Even at zero temperature, the oscillations will be broadened because of scattering, ef-
fectively washing out the signal. To see the effect—as discussed in class—it the field
H must be such that

eH

mc
τ ≫ 1 =⇒ H ≫ ~kF

eℓ
≃ 10 Tesla. (3.b.6)

Problem 4: Tight-Binding Resonant Conduction

Consider the one-dimensional tight-binding model with Hamiltonian

H = ε0|0〉〈0| +
∑

n

tn

(

|n〉〈n+ 1| + |n+ 1〉〈n|
)

, (4.a.1)

where t−1 = t−, t0 = t+ and all other tn = t. There is an impurity at site n = 0. We are to obtain
the probability of transmission across the impurity for an incident electron with zero energy. We are to
examine the case when ε0, t−, and t+ are all much less than t, showing its resonant form.

In the zero-temperature limit with the Fermi level at zero energy, we are to obtain the current resulting
from a linear potential difference across the impurity. We should estimate the size of the voltage for
which this limit is valid.

Consider the test wave function

|ψ〉 = |0〉 +
∑

m>0

{(

Aeiqm +Re−iqm
)

|m〉 + Se−iqm| −m〉
}

. (4.a.2)

Although the notation is a bit compact, this is nothing but an incoming wave with
momentum −q 6 toward the origin. The wave function is of course not normalized.
The part of |ψ〉 proportional to S is nothing more than the transmitted wave, and
the part proportional to R is the reflected wave.

We are seeking a zero-energy eigenstate |ψ〉. Acting with the Hamiltonian on our test
function, we see

H |ψ〉 =
(

ε0 + t+
(

Aeiq +Re−iq
)

+ t−Se
−iq
)

|0〉 +
(

t+ + t
(

Aei2q +Re−i2q
))

|1〉 +
(

t− + tSe−i2q
)

| − 1〉

+
∑

m≥2

t
{(

Aeiq(m+1) +Re−iq(m+1) +Aeiq(m−1) +Re−iq(m−1)
)

|m〉 + S
(

e−iq(m+1) + e−iq(m−1)
)

| −m〉
}

.

(4.a.3)

If |ψ〉 is an eigenvector of H with eigenvalue 0, then the coefficient of every basis ket
|ℓ〉 must vanish in the expression above. This gives us a large system of constraints.
The constraint coming from the coefficient of | −m〉 in equation (4.a.3)—the pieces
proportional to S shows that
(

e−iq(m+1) + e−iq(m−1)
)

= 0 ∀ m =⇒
(

e−iq + eiq
)

∝ cos(q) = 0. (4.a.4)

Therefore we see that q = ±π
2

7. To match our sign conventions, this implies that q =
−π

2 .We will save some time analyzing the other constraint equations by automatically

inserting eiq = e−iπ/2 = −eiπ/2 = −i as it is encountered. The other constraint
equations then are then

t+ − t(A+R) =0, (4.a.5)

t− − tS =0, (4.a.6)

ε0 + it+ (R−A) + it−S =0. (4.a.7)

6The signs are consistent if annoying—the author did not find time to clean up less-than pedagogical trivialities.
7We can take q to be in the first Brillouin zone without loss of generality.
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These three equations are linearly independent and allow us to completely solve for
A,R and S in terms of t±, t and ε0. Indeed, we have

S =
t−
t

and A =
t2+ + t2− − itε0

tt+
and R =

t2+ − t2− + itε0

tt+
. (4.a.8)

This allows us to compute the transmission coefficient8

T =
|S|2
|A|2 =

4t2−t
2
+

{

(

t2+ + t2−
)2

+ ε20t
2
} . (4.a.9)

In the limit where t± and ε0 are much less than t, then we see that

1 − T =
1

{

(

t2+ + t2−
)2

+ ε20t
2
}

{

(

t2+ + t2−
)2

+ ε20t
2 − 4t2−t

2
+

}

,

=

{

(

t2+ − t2−
)2

+ ε20t
2
}

{

(

t2+ + t2−
)2

+ ε20t
2
} ,

=

t2
{

(t2+−t2
−
)
2

t2 + ε20

}

t2
{

(t2
+

+t2
−
)2

t2 + ε20

} ,

=

(

1 +

(

t2+ − t2−
)2

ε20t
2

)(

1 −
(

t2+ + t2−
)2

ε20t
2

+

(

t2+ + t2−
)4

ε40t
4

+ . . .

)

,

= 1 − 4t2+t
2
−

ε20t
2

+
4t2+t

2
−

(

t2+ + t2−
)2

ε40t
4

+ . . . ,

= 1 − 4t2+t
2
−

ε20t
2

{

1 −
(

t2+ + t2−
ε0t

)2

+

(

t2+ + t2−
ε0t

)4

− . . .

}

.

Therefore we see that as t±, ε0 are taken to be small, T → 0.

8We are using sloppy notation: if we want to allow t±, etc. to be complex, then the terms in the expression for T must
be interpreted as their modulus.


